Using of Time Characteristics in Data Flow for Traffic Classification

نویسندگان

  • Pavel Piskac
  • Jiri Novotny
چکیده

This paper describes a protocol detection using statistic information about a flow extended by packet sizes and time characteristics, which consist of packet inter-arrival times. The most common way of network traffic classification is a deep packet inspection (DPI). Our approach deals with the DPI disadvantage in power consumption using aggregated IPFIX data instead of looking into packet content. According to our previous experiments, we have found that applications have their own behavioral pattern, which can be used for the applications detection. With a respect to current state of development, we mainly present the idea, the results which we have achieved so far and of our future work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Extraction to Identify Network Traffic with Considering Packet Loss Effects

There are huge petitions of network traffic coming from various applications on Internet. In dealing with this volume of network traffic, network management plays a crucial rule. Traffic classification is a basic technique which is used by Internet service providers (ISP) to manage network resources and to guarantee Internet security. In addition, growing bandwidth usage, at one hand, and limit...

متن کامل

Predicting the Next State of Traffic by Data Mining Classification Techniques

Traffic prediction systems can play an essential role in intelligent transportation systems (ITS). Prediction and patterns comprehensibility of traffic characteristic parameters such as average speed, flow, and travel time could be beneficiary both in advanced traveler information systems (ATIS) and in ITS traffic control systems. However, due to their complex nonlinear patterns, these systems ...

متن کامل

Behavioral Analysis of Traffic Flow for an Effective Network Traffic Identification

Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...

متن کامل

Method of Video-Measurements of Traffic Flow Characteristics at a Road Junction

In the theory of traffic flows the main characteristics are: intensity, speed, and density.  They make it possible to use hydrodynamic models. In connection with the development of modern highways and road networks, traffic flows behavior is becoming more and more complex and diverse. In particular, the B.Kerner studies have shown that the laminar solution of hydrodynamic models is poorly corre...

متن کامل

Traffic Condition Detection in Freeway by using Autocorrelation of Density and Flow

Traffic conditions vary over time, and therefore, traffic behavior should be modeled as a stochastic process. In this study, a probabilistic approach utilizing Autocorrelation is proposed to model the stochastic variation of traffic conditions, and subsequently, predict the traffic conditions. Using autocorrelation of the time series samples of density and flow which are collected from segments...

متن کامل

Identifying and Analyzing Stop and Go Traffic based on Asymmetric Theory of Driving Behavior in Acceleration and Deceleration

Stop and go traffic that leads to oscillate traffic flow frequently is observed on congestion flow. Unexpected reasons such as lane – changing maneuvers, lower speeds of leader vehicle and moving bottleneck cause stop and go traffic and amplifying delay and environment impacts. Stop and go traffic exactly can’t be modeled by traffic models, and also car following models based on kinematic flow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011